LAKE SUPERIOR OUTFLOW 1860 - 1968 BY THE COORDINATING COMMITTEE ON GREAT LAKES BASIC HYDRAULIC AND HYDROLOGIC DATA # TABLE OF CONTENTS | INTRODUCTION | Page | |---|------| | Requirement for Internationally Coordinated Hydraulic and Hydrologic Data | 1 | | Establishment of International Study | 2 | | Authority | 3 | | Purpose and Scope | 4 | | Acknowledgments | 4 | | Adoption | 4 | | PHYSICAL CONDITIONS AND BASIC DATA | | | Natural Outlet Control of Lake Superior | 5 | | Upper St. Marys River | 5 | | Lower St. Marys River | 5 | | Section Suitable for the Determination of Rapids Flows | 5 | | Water Level Records Available | 6 | | Flow Measurements Available for Development of Stage-Discharge
Relationships | 6 | | MEASURED DATA | | | Diversion Through Navigation Canals | 7 | | Diversion Through Power Canals | 7 | | BASIC PRINCIPLES ADOPTED | | | Effects of Ice and Weed Retardation on Stage-Discharge Relationships | 9 | | Effects of River Regimen Changes on Stage-Discharge Relationships | 10 | | Effects of Diversions from the River on Stage-Discharge Relationships | , 10 | | Principles Adopted | 10 | | DEVELOPMENT OF STAGE-DISCHARGE RELATIONSHIPS | Page | |--|-------------| | Marquette Stage-Discharge Relationship | 11 | | Southwest Pier Stage-Discharge Relationships | 11 | | Summary of Southwest Pier Equations | 14 | | DERIVATION OF OUTFLOWS | | | General. | 14 | | Rapids Flows, 1860-1870 | 15 | | Rapids Flows, 1871-1968 | 15 | | RESULTS | 15 | | LIST OF TABLES | | | TABLE 1 - St. Marys River Discharge Equations and Hydraulic Conditions
Before 1923 | | | TABLE 2 - St. Marys River Flows Rapids Discharge Equations for Standard Gate Openings | | | TABLE 3 - St. Marys River Rapids Discharge | | | TABLE 4 - Total Diversion for Navigation | | | TABLE 5 - Total Diversion for Power | | | TABLE 6 - Mean Monthly Lake Superior Outflows | | | LIST OF PLATES | | | PLATE 1 - Map of St. Marys River Region | | | PLATE 2 - Improvements St. Marys Rapids - 1860-1914 | | | PLATE 3 - Improvements St. Marys Rapids - 1914-1968 | | | PLATE 4 - Marquette Stage-Discharge Relationship - Period Jan. 1860-Sept. 18 | 387 | | PLATE 5 - Southwest Pier Stage-Discharge Relationship - Period Jan. 1860-Sept. 18 | 887 | | PLATE 6 - Southwest Pier Stage-Discharge Relationship - Period Jan. 1893-July 19 | 901 | | PLATE 7 - Southwest Pier Stage-Discharge Relationship - Periods Nov.1901-Apr.19 June 1909-Jan. | 909
1911 | # LAKE SUPERIOR OUTFLOWS 1860 - 1968 ### INTRODUCTION - 1. Requirement for internationally coordinated hydraulic and hydrologic data. The Great Lakes-St. Lawrence River system extends southerly and easterly from the headwaters of tributary streams in northern Minnesota and western Ontario some 2,000 miles to the Gulf of St. Lawrence in the Atlantic Ocean. The system drains a great interior basin of more than 295,000 square miles to the outlet of Lake Ontario, reaches almost half way across the North American continent, and borders upon eight states of the United States and two provinces of Canada. This vast series of lakes and rivers is shared by the United States and Canada. The joint use of these waters poses numerous international problems in the solution of which the two countries need coordinated basic data. - 2. Prior to 1953, data pertaining to the hydraulic and hydrologic factors of the Great Lakes and St. Lawrence River were collected and compiled independently by the responsible federal agencies in Canada and the United States, with only superficial and informal correlation of some of the data. As a consequence, the data in many instances were developed on different bases and datum planes and were divergent in many respects. This situation resulted in a large volume of study and evaluation by each country of the data used by the other in the solutions of international problems. - 3. Establishment of international study. The quantity and scope of the international problems were greatly increased by the advent of extremely high lake levels in 1952 and by the imminent power and navigation development in the St. Lawrence River System. Recognizing that continued independent development of the basic data was illogical under the circumstances and that early agreement upon the hydraulic and hydrologic factors was of paramount importance, the Corps of Engineers, United States Army, and the Departments of Transport, Mines and Technical Surveys, and Resources and Development, Canada, opened negotiations early in 1953 for the purpose of establishing a basis for development and acceptance by both countries of identical data. The negotiations culminated in a meeting of representatives of the interested agencies at Ottawa on 7 May 1953. - 4. At the meeting, the Coordinating Committee on Great Lakes Basic Hydraulic and Hydrologic Data was formed to study the problem and to establish a basis of procedure. This Committee was established advisory to the agencies of the United States and Canada which are charged with the responsibility for collecting and compiling the Great Lakes hydraulic and hydrologic data. The Committee was constituted as follows: ### Canada - T. M. Patterson, Water Resources Division, Department of Resources and Development, Chairman - J. E. R. Ross, Geodetic Survey of Canada, Department of Mines and Technical Surveys - D. M. Ripley, Special Projects Branch, Department of Transport ### United States - Gail A. Hathaway, Office, Chief of Engineers, Department of the Army, Chairman - Edwin W. Nelson, Great Lakes Division, Corps of Engineers, U.S. Army - W. T. Laidly, U.S. Lake Survey, Corps of Engineers, U.S. Army The present membership of the Coordinating Committee is as follows: ### Canada - A. T. Prince, Inland Waters Branch Department of Energy, Mines and - D. M. Ripley, Marine Hydraulics Branch, Department of Transport Resources ## United States - H. F. Lawhead, North Central Division Corps of Engineers, U. S. Army - L. D. Kirshner, U. S. Lake Survey, Corps of Engineers, U. S. Army - 5. Three working committees, designated the River Flow Subcommittee, the Vertical Control Subcommittee, and the Lake Levels Subcommittee, were formed to assist the Coordinating Committee in its work. Subsequently, a fourth committee, designated the Physical Data Subcommittee, was formed. These subcommittees were directed to conduct the required technical studies through collaboration of the appropriate agencies of the United States and Canada. The River Flow Subcommittee which conducted the portion of the work reported herein was initially constituted as follows: ### Canada ## United States C. G. Cline, Water Resources Branch Department of Northern Affairs and National Resources F. W. Townsend, U. S. Lake Survey Corps of Engineers, U. S. Army During the course of this study Mr. F. I. Morton, Water Resources Branch, also served as a member of the Subcommittee. The present membership of the River Flow Subcommittee is as follows: ### Canada ## United States - D. F. Witherspoon, Inland Waters Branch, Department of Energy, Mines and Resources - I. M. Korkigian, U. S. Lake Survey Corps of Engineers, U. S. Army - 6. Authority. The River Flow Subcommittee was instructed to study the available records of outflow from Lake Superior and the methods employed in their derivation. Since it was known that the quantities and methods were different, the subcommittee was instructed further to develop a method of deriving the outflows based upon the foregoing studies and upon other appropriate studies and to derive outflows for the entire period of record suited to the quality of data available. - 7. Purpose and scope. The purpose of this report is to document the Lake Superior outflow studies and to record the outflows which were derived for the period 1860-1968. The Coordinating Committee terminated its Lake Superior outflow studies with the year 1968 with the understanding that the responsible federal agencies of Canada and the United States would continue the derivation and coordination of the outflows subsequent to that year. - 8. Acknowledgments. Engineers and facilities of the Inland Waters Branch, Department of Energy, Mines and Resources, and the U. S. Lake Survey, Corps of Engineers, U. S. Army, were employed throughout the study. Water level and diversion records, river flow measurements, assistance and advice were furnished by the International Lake Superior Board of Control; the Inland Waters Branch, Department of Energy, Mines and Resources; the Soo Area Office, Corps of Engineers, U. S. Army; the Great Lakes Power Company, Limited; the Edison Sault Electric Company; and the U. S. Lake Survey, Corps of Engineers, U. S. Army. - 9. Adoption. At a meeting of the Coordinating Committee held in Niagara Falls, Canada on September 17, 1969 the Coordinating Committee agreed with the recommendation of the River Flow Subcommittee to adopt this report. ### PHYSICAL CONDITIONS AND BASIC DATA - 10. Natural outlet control of Lake Superior. The entire outflow from Lake Superior during the period of record discharged through the St. Marys River. The location map of the river is shown on Plate 1. The river flows out of the southeast corner of Lake Superior in a southeasterly direction to Lake Huron, a total distance of 61, 63, or 75 miles according to the route traversed. The fall between the lakes averages about 22 feet. A rock ledge at the head of the St. Marys River rapids is the natural control of the St. Marys River. Paragraphs 11 and 12 pertain to present day conditions in the river. - 11. <u>Upper St. Marys River</u>. The river falls about 1/4 foot in the first 14 miles from Point Iroquois to the head of the U. S. navigation canal at Sault Ste. Marie, Michigan. In the next 1-1/2 miles the river drops about 20 feet through the rapids. - 12. Lower St. Marys River. About 2-1/2
miles below the rapids the river divides into two channels, one passing to the north end, the other to the west of Sugar Island. The flow in the northerly channel continues into Lake George and thence north of St. Joseph Island into North Channel, Lake Huron. The flow west of Sugar Island passes around Neebish Island into Lake Munuscong past St. Joseph Island and into Lake Huron. The fall in the lower river averages about 2 feet. - 13. Section suitable for the determination of rapids flows. The rock ledge at the St. Marys River rapids acts as a submerged weir controlling the flow of the rapids. This section at Sault Ste. Marie is suitable for determination of flow. Stage-discharge relationships for the Southwest Pier gauge located about a mile above the rapids are determinable from field measurements of the rapids flow. The location of the gauge is shown on - Plate 3. The flows computed at this section plus diversions around the rapids for navigation and power make up the total St. Marys River flow. Plates 2 and 3 show the many changes which affected the determination of the flows from 1860 to 1922. - 14. Water level records available. Beginning November 1870, stages at the head of the rapids are available from the records of the Southwest Pier gauge. Before 1870, Southwest Pier stages are available for summer months in 1860-1861 and 1867-1869 periods. - 15. Lake Superior stages are available from the records of the Marquette gauge for the entire period 1860-1968. These lake stages were used to derive flows when Southwest Pier stages were unavailable in the period before November 1870. - 16. Flow measurements available for development of stage-discharge relationships. Numerous field measurements of flow in the river were available for this study. The measurements suitable for development of stage-discharge relationships for rapids flow were as follows: ### MEASURED DATA | YEAR | NUMBER OF
MEASUREMENTS | HYDRAULIC SECTION | |--|--|---| | 1895-1896
1896
1899
1901
1901
1902
1905
1909
1927-1929 | 14
54
63
20
44
146
60
30
109 | Bridge Sprys Dock Sprys Dock Bridge Bridge Bridge Bridge Brewery Bridge Gates Gates | The locations of the hydraulic sections at which these measurements were made are shown on Plates 1, 2 and 3. Additional measurements were made in 1935 and 1965. The 1965 measurements are not suitable for development of a stage-discharge relationship or for indicating inaccuracies in the present rating. - 17. Diversion through Navigation Canals. The first ship canal in the St. Marys River was constructed on the south side of the rapids in 1855 by the State of Michigan. The United States government in 1871 started enlargement of the canal, which officially became federal property in 1881. Improvements of the U.S. navigation canal continued until September 1919 when there were four locks in operation. In September 1895 the lock in the Canadian navigation canal on the north side of the rapids was put into operation. No data are available to determine the flow in the U. S. canal before 1887, but subsequent data indicates that the flow during the navigation season was probably less than 200 cubic feet per second. The sources of the monthly flows through the navigation canals used in this report were the 1911 report of Noble and Woodard entitled, ** Report on the Regulation of Lake Superior to Meet the Requirements of the United States War Department "; the 1931 report of Horace M. Edmands entitled, "Report on Discharge of St. Marys River"; and tables prepared each month by the Lake Superior Board of Control entitled, "Continuation of Tables in Appendix IV, Noble and Woodard's Report on Lake Superior Regulation . Changes in channel configuration for the navigation improvements are shown on Plates 2 and 3. Table 4 summarizes the diversions made for navigation. - 18. <u>Diversion through Power Canals</u>. The first utilization of the St. Marys River rapids for the production of power was in 1822-1823 when a raceway and sawmill were built by the United States Army. In 1887 construction of a power canal through Sault Ste. Marie, Michigan, was started by the St. Marys Falls Water Power Company, which shortly thereafter abandoned the project. In 1902 the Michigan Lake Superior Power Company completed the canal now known as the Edison Sault Electric Company Canal. Construction of two other power canals was started in 1888; one by the Edison Sault Light and Power Company through Chandler-Dunbar Power Canal on the south side of the rapids, and the other by the Lake Superior Power Company on the north side of the rapids in Canada. By 1893 water in the Chandler-Dunbar Power Canal, now known as the U. S. Power Canal, was being used by the power plant on the south side of the rapids. In November 1895, the Lake Superior Power Company, now the Great Lakes Power Company, started to use the Canadian Power Canal. Changes in the channel configuration for power are shown in Plates 2 and 3. Diversions for power are summarized in Table 5. 19. The sources of the monthly flows in the power canals used in this report are the same as for the flows in the navigation canals mentioned above: the Noble and Woodard 1911 Report, the Edmands 1931 Report, and the Lake Superior Board of Control monthly tables beginning in 1931. The flows in the Chandler-Dunbar Power Canal tabulated in the Noble and Woodard Report were adjusted to reflect field observations of leakage from the canal made in 1895, 1901 and 1909 by U. S. Lake Survey. The tabulated monthly flows in the canal were reduced by the following amounts: | | PERIOD | REDUCTION
IN CFS | PERIOD | REDUCTION IN CFS | |-------------|----------------|---------------------|---------------------|------------------| | Jan. | 1893-Dec. 1896 | 300 | Sept. 1906-May 1907 | 300 | | Jan. | 1897-Dec. 1897 | 200 | June 1907-June 1908 | 400 | | Jan. | 1898-Dec. 1898 | 100 | July 1908-Feb. 1909 | 500 | | Jan. | 1899-Nov. 1902 | 0 | Mar. 1909-Apr. 1910 | 800 | | Dec. | 1902-Sept.1904 | 100 | May 1910-Dec. 1910 | 700 | | Oct. | 1904-Aug. 1906 | 200 | · | | ### BASIC PRINCIPLES ADOPTED - 20. From consideration of the physical conditions of the St. Marys River and the basic data available, it was concluded that the basic principles for determining the Lake Superior outflows should be founded upon derivation of the flows through the St. Marys River rapids. Due to the limited extent of the drainage area adjacent to the river between Point Aux Pins and the rapids, and to the small amounts of local inflow contributed by these areas, the river flows at Sault Ste. Marie are considered to be equal to the Lake Superior outflows. In the establishment of the basic principles, it was necessary to consider three factors affecting the stage-discharge relationships for rapids flow: weed and ice retardation, river regimen changes, and diversions past the rapids for navigation and power. - 21. Effects of ice and weed retardation on stage-discharge relationships. The stage-discharge relationships at Southwest Pier are considered to be unaffected by the presence of ice and weeds in the relatively short reach from the gauge to the head of the rapids. For the 1860-1870 period, an average winter flow retardation due to ice of 4,000 cfs was applied to the January through April flows from the Marquette stage-discharge relationship. The 4,000 cfs retardation is the average difference between winter discharges from recorded Marquette and Southwest Pier stages in the 1871-1887 period and the appropriate stage-discharge relationships. Thus the retardation used includes the effects of such factors as slope between Marquette and the rapids as well as the effects of ice. The May through December relationship between Marquette and the discharge, computed from the Southwest Pier equation, contains any weed effect that occurs. - relationships. The 1931 Report by Edmands mentioned above reports three major changes in regimen of the rapids section of the river in the period before 1931: construction of International Railroad Bridge at Sault Ste. Marie in 1887; construction of the power canal along the south side of the rapids in 1892; and construction of the compensating works at the upper end of the rapids during the 1901-1921 period. By obstructing the flow, these changes in regimen affected the Southwest Pier stage-discharge relationship. These changes are shown on Plates 2 and 3. Since 1930 channel improvements and fills have been made in the rapids section, but the effects of these changes of regimen on the stage-discharge relationships for the compensating gates are considered to be minor and counterbalancing. - relationships. Diversion from the river above the U. S. Navigation Canal into Edison Sault Electric Company Canal does not affect the Southwest Pier stage-discharge relationship. The diversions into the U. S. and Canadian navigation and power canals are taken from the river below the gauge and affect the stage-discharge relationship by increasing the outflow capacity. - 24. Principles adopted. Based upon consideration of all of the above factors, the principles adopted for the Lake Superior outflow determination were as follows: - a. To accept side channel flows as described in paragraphs 17 through 19. - b. Flow at the rapids section of the river as computed from Southwest Pier stage-discharge relationships would be used to determine - St. Marys River monthly flows during entire 1860-1968 period. The Marquette stage-discharge relationship would be used for the months in the 1860-1870 period for which Southwest Pier stages are not available. - c. It was concluded that insufficient data are available to determine daily mean outflows of the past with meaningful
precision, and that a new rating of the compensating works will be required before daily outflows can be determined in the future. - d. Monthly mean Lake Superior outflows would be derived for the entire period 1860-1968. # DEVELOPMENT OF STAGE-DISCHARGE RELATIONSHIPS 25. Marquette stage-discharge relationship. Because of missing Southwest Pier water levels, a Marquette stage-discharge relationship was derived from the period when Southwest Pier levels were available during the 1872-1887 period. This Marquette relationship was used when the Southwest Pier levels were missing during the January 1860-October 1870 period. The equation of this stage-discharge relationship is: $Q = 4901 \text{ (Marquette - 593.71)}^{1.5}$ where Q is the discharge in cubic feet per second and Marquette is the stage in feet, IGLD (1955). Plate 4 shows this relationship and the flows and stages on which it is based. 26. Southwest Pier stage-discharge relationships. The stage-discharge relationship for the period before construction of the International Rail-road Bridge was derived from the relationship developed for the period after construction by adjusting for effects of the bridge piers and closure of small channels between the islands on north side of the river. The equation of this relationship is: $$Q = 5516$$ (Southwest Pier - 594.39)^{1.5} It was concluded that this relationship was applicable for the period January 1860-September 1887. Plate 5 shows this Southwest Pier relationship and the adjustments used in its derivation. 27. The stage-discharge relationship for the period between construction of the bridge and construction of the Chandler-Dunbar forebay was derived from the relationship developed for period after forebay construction by adjusting for the effects of diverting the flow through the first two spans at south end of bridge. The reduction in rapids discharge capacity due to construction of the forebay was calculated as 8 per cent at stage 600 feet and 10 per cent at 601.5 feet. The equation of this relationship is: $$Q = 4946$$ (Southwest Pier - 594.32)1.5 It was concluded that this relationship was applicable for the period July 1888-May 1892. This equation is also shown on Plate 5. 28. During the period between construction of the Chandler-Dunbar Power Canal and construction of the first four gates of the compensating works, field measurements of river flow were made in 1895, 1896, 1899 and 1901. A stage-discharge relationship for Southwest Pier was derived from these measurements grouped by stage. The equation of the relationship is: $$Q = 4040 \text{ (Southwest Pier - 593.80)}^{1.5}$$ It was concluded that this relationship was applicable for the period January 1893-July 1901. Plate 6 shows this relationship and the measured data on which it is based. 29. During the period between construction of cofferdams for the first four gates and filling at Northwest Pier, field measurements of river flow were made in 1901, 1902 and 1905. A stage-discharge relationship for Southwest Pier was derived from these measurements grouped by stage. The equation for the relationship is: $$Q = 3936$$ (Southwest Pier - 594.39) $^{1.5}$ It was concluded that this relationship was applicable for the period November 1901-April 1909. Plate 7 shows this relationship and the measured data on which it is based. 30. During the period between filling at Northwest Pier and widening of U. S. Power Canal to divert the flow through two additional bridge spans, field measurements of river flow were made in September 1909. A stage-discharge relationship for Southwest Pier was derived from these measurements grouped by stage and paralleling the equation applicable for period before filling. The equation for this relationship is: $$Q = 3936$$ (Southwest Pier - 594.65) $^{1.5}$ It was concluded that this relationship was applicable for the period June 1909-January 1911. The relationship and the data on which it is based are also shown on Plate 7. 31. In the 1931 Edmands report twenty-five Southwest Pier stage-discharge relationships were derived for changes in rapids regimen made during the period between widening of U. S. Power Canal and completion of the compensating works in 1921. It was concluded that these relationships were applicable for the period 1 February 1911-12 August 1921 during the times shown in the report. - 32. During the period after construction of the compensating works, field measurements of river flow were made in 1927, 1928, 1929 and 1930. Sixteen Southwest Pier stage-discharge relationships for standard gate opening of the 16 gates were derived from these measurements in the Edmands report. The relationships are shown in equation form on Table 2. It was concluded that these relationships were applicable for the period 13 August 1921 to date. - 33. Summary of Southwest Pier equations. The stage-discharge equations for flow through the rapids during the 1860-1911 period, as adopted by the Committee are shown in Table 1. In using these equations to compute the monthly flows in the transition periods, the effects of the regimen changes on the flows, were proportionately increased over the period. These relationships and their applicable hydraulic conditions are summarized in Table 1. Southwest Pier stage in the equations is referred to International Great Lakes Datum (1955). ### DERIVATION OF OUTFLOWS 34. General. The monthly Lake Superior outflow is derived from the addition of the flow through the rapids, the flow through the U. S. and Canada Navigation Canals, the Edison Sault Electric Company Canal, the U. S. Power Canal, and the Canadian Power Canal. The diversion flows are provided by the navigation and power entities in each country. The rapids flows are computed from the relationships shown in Table 1. The rating used since August 1921 for the rapids flows is that shown in Table 2. This rating is based on the 1935 measurements. Further measurements were made in 1965 but were not of sufficient detail to establish a new rating of the compensating works. The flow through the rapids and the flows in the navigation and power canals are shown on Tables 3 through 5. - 35. Rapids flows, 1860-1870. In this period, monthly mean flows through the rapids were derived from Lake Superior stages at Marquette. When available, Southwest Pier stages were used. - 36. Rapids flows, 1871-1968. In this period, monthly mean flows through the rapids were derived from Southwest Pier stages. ### RESULTS 37. The results of this Lake Superior outflows determination are shown on Table 6, the Mean Monthly Lake Superior Outflow 1860-1968. TABLE 1 | | | ST. MARYS RI
HYDRAULI | MARYS RIVER DISCHARGE EQUATIONS AND HYDRAULIC CONDITIONS BEFORE 1923 | TIONS AND
E 1923 | | |------------|------------------------|--------------------------|--|--|---------------------------------------| | | | | Hydraulic Section | | | | No. | Date | Bridge Spans | Gates Open | Structures
in Section | Discharge
Equation | | m | Jan. 1860-Sept. 1887 | 0 | | 0 | $Q = 5516 \text{ (SWP-594.39)}^{1.5}$ | | Ω | Jan. 1860-0ct, 1870 ** | | | | Q = 4901 (Marquette-593.71)1.5 | | m | Oct, 1887-June 1888 | 0-10 | | Construction of
Bridge Piers and
Approaches | Transition 2 to 4 | | 4 | July 1888-May 1892 | 10(1-10) | | Bridge in Place | $Q = 4946 \text{ (SWP-594.32)}^{1.5}$ | | 2 | June 1892-Dec. 1892 | 10 to 8 | | Spans 1 and 2
diked off | Transition 4 to 6 | | * 9 | Jan. 1893-July 1901 | 8(3-10) | | All streams on
Canadian side
closed | $Q = 4040 \text{ (SWP-593.80)}^{1.5}$ | | \$2.0 | Aug, 1901-0ct, 1901 | 8 to 6 | 0 | Construction of compensating works started. Cofferdams closed spans 8 and 9. | Transition 6 to 8 | | ₹ | Nov. 1901-Apr. 1909 | 6(3-8) | 0 | | $Q = 3936 \text{ (SWP-594.39)}^{1.5}$ | | 6 | May 1909 | 9 | 0 | | Transition 8 to 10 | ^{**} S.W.P. levels not available TABLE 1 | | | ST. MARYS F
HYDRAUI | MARYS RIVER DISCHARGE EQUATIONS AND
HYDRAULIC CONDITIONS BEFORE 1923 | ATIONS AND
RE 1923 | | |-------------|----------------------------|------------------------|---|--|---------------------------------------| | | | | Hydraulic Section | u | | | No. | Date | Bridge Spans | Gates Open | Structures
in Section | Discharge
Equation | | 10 | June 1909-Jan, 1911 | 6 to 4 | 0 | Closing spans
3 and 4 | $Q = 3936 \text{ (SWP-594.65)}^{1.5}$ | | ¥T. | Feb. 1911-Sept. 1914 | Approx. 4 | 0 | Cofferdam removed
from span 9 | Q = 2787 (SWP-593.74)1.5 | | IS | Oct. 1914-Nov. 1914 | (8-5)4 | 4(1-4) | | $Q = 3166 \text{ (SWP-593.78)}^{1.5}$ | | 134 | Dec. 1914-Sept. 1915 | 2(7-8) | 4(1-4) | Breakwater in
front of spans 5-6 | Q = 2338 (SWP-593.60)1.5 | | 1,4 | Oct. 1915-May 1916 | 2(5,8) | 7(1-4,14-16) | Span 5 partly | Q = 2126 (SWP-593.62)1.5 | | 15 | June 1916-15 Sept. 1916 | 2(5,8) | 12(1-4,9-16) | obstructed
Breakwater above
span 5 removed | $Q = 2232 \text{ (SWP-593.62)}^{1.5}$ | | 16 1 | 16 Sept, 1916-20 June 1917 | 2(5,8) | 12(1-4)(6-16) | Excavation complete above Gates 9-16 | Q = 2921 (SWP-593.75)1.5 | | 17 | 21 June 1917-3 Aug. 1917 | 2(5,8) | 8(1-4)(13-16) | Part of span 5
obstructed by dike | $Q = 2600 \text{ (SWP-593.71)}^{1.5}$ | | 18 | 4 Aug. 1917-12 Aug. 1917 | 2(5,8) | 0 | | $Q = 1544 \text{ (SWP-593.27)}^{1.5}$ | | 19 | 13 Aug. 1917 [.] | 2(5,8) | 2(3,4) | | $Q = 2000 \text{ (SWP-593.63)}^{1.5}$ | TABLE 1 | ST. MARYS RIVER DISCHARGE EQUATIONS AND HYDRAULIC CONDITIONS BEFORE 1923 | Hydraulic Section | Bridge Spans Gates Open in Section Equation | Nov. 1917 $2(5,8)$ $4(1-4)$ $Q = 2252 (SWP-593.67)^{1.5}$ | Nov. 1917 2(5,8) 0 Same as No. 18 | ay 1918 $1\frac{2}{4}$ (5, $\frac{2}{4}$ of 8) 0 Breakwater partly Q = 1273 (SWP-593.02) ^{1.5}
obstructing span 8. Enlargement of Bridge Piers underway in 1918. | $1\frac{2}{4}$ (5, $\frac{2}{4}$ of 8) 1(16) Q = 1509 (SWP-593.28) ^{1.5} | $1\frac{2}{4}(5,\frac{2}{4} \text{ of 8})$ 0 Same as No. 22 | (5) | 1918 17 | | $1\frac{2}{4}(5,\frac{2}{4} \text{ of 8})$ 2(10,11) Same as No. 25 | $1\frac{2}{4}(5,\frac{2}{4} \text{ of } 8)$ 0 Same as No. 22 | 4 | |--|-------------------|---|---|-----------------------------------|---|---|---|-----|---------|--------------------------|--|--|-------------------------| | | | Date Bri | | - | 1 Dec. 1917-8 May 1918 | 9 May 1918 | 10 May 1918 | | L-1-2 | 25 June 1918-1 July 1918 | 2 July 1918 | 3 July 1918 | 4 July 1918-6 July 1918 | | | | No | 20 | 12 | 22 | 83 | 57 | 25 | 26 | 27 | 28 | 62 | 30 | TABLE 1 | | | ST, MARYS R
HYDRAUL | MARYS RIVER DISCHARGE EQUATIONS
HYDRAULIC CONDITIONS BEFORE 1923 | TIONS AND
E 1923 | | |-----|-----------------------------|------------------------|---|---|--| | | | | Hydraulic Section | | | | No. | Date | Bridge Spans | Gates Open | Structures
in Section | Discharge
Equation | | 37 | 7 July 1918-15 Aug. 1918 | 1(5) | 0 | Cofferdam obstructing span 8 for construction of Gates 5-8. | $Q = 602.1 \text{ (SWP-593.18)}^{1.5}$ | | 32 | 16 Aug. 1918-20 Aug. 1918 | 1(5) | 1(1) | | $Q = 774.8 \text{ (SWP-592.90)}^{1.5}$ | | 33 | 21 Aug. 1918-12 Sept. 1918 | 1(5) | 2(11,13)(12,14)
(11,14) | | $Q = 946.7 \text{ (SWP-592,87)}^{1.5}$ | | 34 | 13 Sept, 1918 | 1(5) | 0 | | Same as No. 31 | | 35 | 14 Sept. 1918-16 Sept. 1918 | 1(5) | 4(11-14) | | $Q = 1384 \text{ (SWP-593.29)}^{1.5}$ | | 36 | 17 Sept. 1918 | 1(5) | 0 | | Same as No. 31 | | 37 | 18 Sept. 1918-12 Nov. 1918 | 1(5) | (71-14) | | Same as No. 35 | | 38 | 13 Nov. 1918-25 Nov. 1918 | 1(5) | 2(11,14) | | Same as No. 33 | | 39 | 26 Nov. 1918-4 July 1919 | 1(5) | 0 | | Same as No. 31 | | 70 | 5 July 1919 | . 1(5) | 8(9-16) | | $Q = 2037 \text{ (SWP-593.63)}^{1.5}$ | | T+7 | 6 July 1919-3 Sept. 1919 | 1(5) | 0 | | Same as No. 31 | | 277 | 4 Sept. 1919-5 Sept. 1919 | 1(5) | (77-77) | | Same as No. 35 | | | | | | | 4 of 5 | # LAKE SUPERIOR OUTFLOW 1860-1968 TABLE 1 | | | ST, MARYS RIVE
HYDRAULIC | R DISCHARGE
CONDITIONS B | EQUATIONS AND BEFORE 1923 | | |-----|----------------------------|-----------------------------|-----------------------------|---------------------------------------|--| | | | | Hydraulic Section | | | | No. | Date | Bridge Spans | Gates Open | Structures
in Section | Discharge
Equation | | 43 | 6 Sept, 1919-29 April 1920 | 1(5) | 0 | | Same as No. 31 | | 44 | 3 Apr. 1920-6 May 1920 | 1(5) | 4(13-16) | | Same as No. 35 | | 45 | 7 May 1920-26 July 1920 | 1(5) | 7(1-3,13-16) | | $Q = 2054 \text{ (SWP-593.81)}^{1.5}$ | | 97 | 27 July 1920-4 Aug. 1920 | 1(5) | 11(1-3,9-16) | | $Q = 2316 \text{ (SWP-593.63)}^{1.5}$ | | 24 | 5 Aug. 1920-10 Aug. 1920 | 1(5) | 12(1-4,9-16) | | $Q = 2373 \text{ (SWP-594.56)}^{1.5}$ | | 87 | 11 Aug. 1920-8 Sept. 1920 | 1(5) | 16(1-16) | | $Q = 2833 \text{ (SWP-593.75)}^{1.5}$ | | 67 | 9 Sept, 1920-16 Sept, 1920 | 1(5) | 8(1-8) | | $Q = 2208 \text{ (SWP-593.68)}^{1.5}$ | | 20 | 17 Sept, 1920-11 Oct, 1920 | 1(5) | 4(1-4) | | $Q = 1470 \text{ (SWP-593.25)}^{1.5}$ | | 51 | la Oct. 1920-1 Aug. 1921 | 1(5) | 0 | | Same as No. 31 | | 52 | 2 Aug, 1921-9 Aug, 1921 | 1(5) | 8(15,16) | | Same as No. 33 | | 53 | 10 Aug. 1921-12 Aug. 1921 | 1(5) | 3(14-16) | | $Q = 1162 \text{ (SWP-593.07)}^{1.5}$ | | 54 | 13 Aug. 1921 | 1(5) | 4(13-16) | Span 5 closed | $Q = 1384 \text{ (SWP-593.29)}^{1.5}$ | | 55 | 14 Aug. 1921-Aug. 1922 | 0 | Standard | Compensating Works completed. | See Table 2 for equation of standard gate openings | | 56 | Aug. 1922-April 1933 | | - | Excavation down-
stream gates 9-16 | | | | The transport motion data | | | | 5 01 5 | * Based on current meter data. NOTE: SWP is level at Southwest Pier Gauge (ICLD 1955) datum. 5 of ### LAKE SUPERIOR OUTFLOW 1860-1968 TABLE 2 # ST. MARYS RIVER FLOWS RAPIDS DISCHARGE EQUATIONS FOR STANDARD GATE OPENINGS $Q = a (S.W.P. - b)^{1.5}$ | Number of Gates Open | Gate Numbers | Equation
a | Constants
b | |----------------------|-------------------|----------------|------------------| | 1
2 | 9
8 - 9 | 196.8 | 591.60 | | 3 | 8-10 | 393.0
588.6 | 591.21
591.41 | | 4
5
6 | 7-10
7-11 | 833.0
1077 | 591.94
592.42 | | 7 | 6-11 | 1350 | 592.83 | | | 6-12 | 1618 | 593.22 | | 8 | 5-12 | 1874 | 593.52 | | 9 | 5-13 | 2022 | 593.62 | | 10 | 4-13 | 2112 | 593.62 | | 11 | 4-14 | 2213 | 593.65 | | 12 | 3-14 | 2278 | 593.62 | | 13 | 3-15 | 2364 | 593.62 | | 14 | 2-15 | 2458 | 593.65 | | 15 | 2-16 | 2538 | 593.65 | | 16 | 1-16 | 2601 | 593.62 | NOTE: Equations taken from Plate 30B, Edmands' report on Discharge of St. Marys River, 1931. Southwest Pier levels, S.W., are on IGLD (1955) datum. ### LAKE SUPERIOR OUTFLOW 1860-1968 # TABLE 3 ### ST. MARYS RIVER RAPIDS DISCHARGE IN HUNDREDS OF CUBIC FEET PER SECOND | YEAR | <u>JAN</u> | FEB | MAR | APR | MAY | JUNE | JULY | <u>AUG</u> | <u>SEPT</u> | <u>OCT</u> | NOV | DEC | |--|--|--|--|--|--|---|---|--|--|--|---|--| | 1860
1861
1862
1863
1864
1865
1866
1867
1868
1869 | 661
668
735
655
608
563
545
570
609 | 655
664
653
627
585
500
477
615
513 | 711
659
630
599
565
501
508
632
601
501 | 728
664
622
578
548
568
590
638
673
592 | 821
841
737
634
648
706
665
738
675
702 | 862
887
760
643
660
766
717
722
702
711 | 876
927
768
665
678
816
751
803
751 | 874
904
807
715
704
816
775
829
761
904 | 864
906
816
744
708
812
766
817
774 | 868
889
823
742
678
803
779
770
723
980 | 829
858
779
758
625
715
758
729
742
904 | 760
794
740
695
644
667
656
679
742
735 | | 1870
1871
1872
1873
1874
1875
1876
1877
1878 | 653
731
688
755
791
837
825
864
971
665 | 613
698
671
719
759
787
815
870
739
591 | 615
648
619
725
739
778
765
847
719
546 | 632
673
619
727
713
829
770
821
717
569 | 697
787
791
839
797
891
923
825
770
639 | 846
870
827
868
885
961
1050
868
823
664 | 883
906
908
961
965
978
1153
942
845
721 | 884
889
978
1015
976
980
1160
961
837
727 | 914
901
991
1028
974
1041
1169
910
784 | 884
860
959
1002
1002
1013
1097
918
803
717 | 862
813
929
954
954
948
1030
868
784
683 | 815
731
833
906
931
831
927
835
741
608 | | 1880
1881
1882
1883
1884
1885
1886
1887
1888
1889 | 573
737
795
727
723
747
700
688
662
698 | 566
719
751
708
686
723
669
662
596
647 | 550
723
727
710
669
698
669
656
600
650 | 553
700
727
721
637
664
665
630
592
648 | 690
784
799
721
708
778
745
698
693
747 | 839
831
819
795
727
839
778
767
845
780 | 891
872
889
829
770
876
811
843
871 | 864
856
912
918
780
925
841
819
869
833 | 897
893
897
847
795
874
813
791
854 | 852
993
876
819
811
835
817
818
850
803 | 856
970
870
795
817
821
784
765
812
747 | 801
901
811
743
778
767
731
698
747
680 | # LAKE SUPERIOR OUTFLOW 1860-1968 TABLE 3 # ST. MARYS RIVER RAPIDS DISCHARGE IN HUNDREDS OF CUBIC FEET PER SECOND | YEAR | <u>JAN</u> | FEB | MAR | APR | <u>MAY</u> | JUNE | JULY | AUG | SEPT | <u>OCT</u> | NOV | DEC | |--|--|--|--
--|--|---|--|--|--|--|--|---| | 1890 | 689 | 592 | 592 | 580 | 652 | 758 | 825 | 808 | 788 | 776 | 749 | 702 | | 1891 | 581 | 600 | 575 | 605 | 668 | 659 | 678 | 682 | 669 | 680 | 661 | 626 | | 1892 | 605 | 546 | 517 | 541 | 614 | 671 | 689 | 684 | 688 | 663 | 615 | 567 | | 1893 | 537 | 508 | 510 | 545 | 615 | 697 | 727 | 742 | 721 | 712 | 702 | 631 | | 1894 | 603 | 589 | 573 | 625 | 764 | 803 | 826 | 828 | 807 | 813 | 797 | 759 | | 1895 | 720 | 697 | 666 | 663 | 704 | 766 | 805 | 808 | 836 | 856 | 771 | 751 | | 1896 | 671 | 671 | 640 | 653 | 755 | 821 | 843 | 845 | 823 | 755 | 759 | 745 | | 1897 | 707 | 660 | 662 | 683 | 739 | 797 | 835 | 860 | 833 | 797 | 780 | 701 | | 1898 | 624 | 591 | 567 | 586 | 630 | 694 | 747 | 766 | 787 | 763 | 735 | 721 | | 1899 | 646 | 624 | 607 | 606 | 743 | 817 | 850 | 875 | 906 | 850 | 831 | 823 | | 1900 | 724 | 712 | 665 | 669 | 699 | 710 | 747 | 782 | 867 | 872 | 890 | 821 | | 1901 | 747 | 699 | 665 | 682 | 724 | 743 | 810 | 811 | 760 | 750 | 712 | 654 | | 1902 | 597 | 555 | 544 | 567 | 594 | 649 | 684 | 686 | 699 | 670 | 683 | 657 | | 1903 | 589 | 554 | 543 | 577 | 636 | 698 | 718 | 734 | 737 | 762 | 743 | 673 | | 1904 | 592 | 533 | 527 | 578 | 627 | 664 | 686 | 696 | 712 | 738 | 721 | 658 | | 1905 | 614 | 554 | 522 | 580 | 622 | 649 | 703 | 723 | 760 | 759 | 723 | 690 | | 1906 | 640 | 592 | 560 | 568 | 614 | 667 | 690 | 696 | 683 | 666 | 642 | 606 | | 1907 | 560 | 533 | 520 | 541 | 568 | 627 | 657 | 680 | 712 | 718 | 678 | 630 | | 1908 | 557 | 506 | 493 | 490 | 553 | 625 | 667 | 686 | 652 | 628 | 587 | 557 | | 1909 | 505 | 473 | 460 | 455 | 484 | 508 | 541 | 563 | 558 | 548 | 537 | 548 | | 1910
1911
1912
1913
1914
1915
1916
1917
1918
1919 | 490
377
429
430
481
363
392
508
225
117 | 457
331
406
406
464
347
379
482
216
111 | 435
314
389
382
431
342
355
466
211
106 | 460
316
402
407
430
328
378
484
212
111 | 494
343
454
460
477
358
434
494
242
118 | 508
384
494
487
502
380
495
499
272 | 501
423
496
517
524
415
520
478
153
134 | 508
474
512
532
528
422
526
405
169
127 | 497
475
520
533
535
424
605
432
270
135 | 491
478
526
560
588
412
647
426
269
121 | 471
458
501
547
566
425
625
394
219
124 | 419
445
478
540
395
407
586
244
120 | # LAKE SUPERIOR OUTFLOW 1860-1968 # TABLE 3 # ST. MARYS RIVER RAPIDS DISCHARGE IN HUNDREDS OF CUBIC FEET PER SECOND | YEAR | JAN | FEB | MAR | APR | <u>YAM</u> | JUNE | JULY | <u>AUG</u> | SEPT | OCT | NOV | DEC | |--|---|--|--|--|---|--|--|--|--|---|---|---| | 1920
1921
1922
1923
1924
1925
1926
1927
1928
1929 | 111
110
50
47
64
50
63
191
230
196 | 106
102
36
45
51
49
56
201
214 | 104
98
34
43
50
49
55
191
205 | 119
102
36
42
68
50
66
203
236
440 | 336
114
80
94
51
44
53
223
251
410 | 372
121
42
46
51
26
37
241
214
182 | 408
125
44
47
52
26
37
256
213
348 | 517
132
55
49
52
66
75
267
335
228 | 381
127
53
49
53
203
171
260
496
181 | 187
130
49
53
53
202
194
265
545 | 122
83
52
53
53
190
251
291
548 | 115
67
66
62
52
139
254
244
493 | | 1930
1931
1932
1933
1934
1935
1936
1937
1938 | 42
54
56
148
57
152
56
52
64
58 | 49
52
54
146
56
56
54
52
56 | 49
51
36
142
54
188
54
52
61
55 | 48
50
103
146
55
387
55
52
65
189 | 85
189
206
158
59
424
252
57
337
480 | 126
197
246
203
198
307
274
159
547
523 | 286
209
241
310
403
347
275
118
548
559 | 418
211
238
170
457
353
267
124
545
552 | 292
208
391
213
365
410
242
134
530
537 | 74
213
365
227
230
498
166
134
495
466 | 53
217
352
223
292
442
160
134
474
151 | 52
205
229
62
418
86
58
74
62
76 | | 1940
1941
1942
1943
1944
1945
1946
1947
1948
1949 | 55
26
245
5
100
155
163
157
157 | 50
25
92
53
13
150
150
152
147
16 | 25
25
9
162
13
150
148
146
146 | 25
25
326
232
13
282
358
148
150
27 | 26
19
92
303
13
486
443
162
117
63 | 26
5
233
509
13
477
178
176
65
66 | 26
5
354
560
232
175
182
554
28 | 26
5
212
576
417
178
155
549
22
180 | 26
5
191
558
512
143
173
408
16
274 | 26
158
82
504
544
215
172
517
16 | 26
468
5
382
416
341
177
284
16
124 | 26
257
5
167
249
165
172
176
16 | # LAKE SUPERIOR OUTFLOW 1860-1968 # TABLE 3 ## ST. MARYS RIVER RAPIDS DISCHARGE IN HUNDREDS OF CUBIC FEET PER SECOND | YEAR | JAN | <u>FEB</u> | MAR | <u>APR</u> | <u>MAY</u> | <u>JUNE</u> | JULY | AUG | SEPT | $\underline{\text{OCT}}$ | <u>VOV</u> | DEC | |--|---|---|--|---|--|--|--|--|---|---|---|--| | 1950
1951
1952
1953
1954
1955
1956
1957
1958
1959 | 64
209
205
112
106
27
106
28
58
51 | 62
190
196
106
102
26
102
27
57
49 | 61
195
187
104
100
26
96
27
55
48 | 62
426
197
163
100
26
128
27
55 | 69
538
436
305
116
96
37
28
57 | 432
554
156
341
122
103
27
28
58
29 | 584
574
42
419
404
69
28
29
36
29 | 597
569
522
542
505
31
62
132
29 | 583
581
526
531
478
25
65
169
29
143 | 581
590
493
489
313
84
63
109
48
454 | 555
568
432
363
114
179
34
65
56
497 | 522
402
128
163
49
126
28
62
54
231 | | 1960
1961
1962
1963
1964
1965
1966
1967
1968 | 97
41
23
26
50
190
108
52
27 | 58
26
23
26
49
178
104
51
26 | 56
26
23
26
46
172
102
48
26 | 58
26
23
26
45
177
145
52
27 | 111
37
23
27
52
257
112
164
27 | 462
50
24
27
58
308
116
213
28 | 494
36
24
27
161
447
288
221
331 | 410
27
24
28
320
453
275
224
538 | 378
27
24
98
389
414
367
188
543 | 263
27
56
106
421
362
208
28
572 | 119
24
54
125
467
348
108
28
552 | 53
24
32
66
242
182
69
27
380 | # LAKE SUPERIOR OUTFLOW 1860-1968 ### TABLE 4 # TOTAL DIVERSION FOR NAVIGATION IN HUNDREDS OF CUBIC FEET PER SECOND | YEAR | JAN | FEB | MAR | APR | MAY | JUNE | JULY | <u>AUG</u> | SEPT | <u>OCT</u> | NOV | DEC | |--|---------------------|-------------------|-------------------|-------------------|--|--|--|--
--|--|--|---| | 1887
1888
1889 | 0
0
0 | 0
0
0 | 0
0
0 | 0
0
0 | 2
2
2 | 2
2
2 | 2
2
2 | 2
2
2 | 2
2
2 | 2
2
2 | 2 2 | 0
0
0 | | 1890
1891
1892
1893
1894
1895
1896
1897
1898
1899 | 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 | 2232347889 | 2 2 3 2 3 4 7 8 8 9 | 2 2 3 2 3 4 7 8 8 9 | 2232347889 | 2232347889 | 2 2 3 2 3 4 7 8 8 9 | 2232347889 | 0 0 0 0 0 0 0 0 | | 1900
1901
1902
1903
1904
1905
1906
1907
1908
1909 | 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 | 8
9
10
9
8
10
10
10 | | 1910
1911
1912
1913
1914
1915
1916
1917
1918
1919 | 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 | 000000446 | 10
10
11
11
10
13
14
13
12 | 10
10
11
11
10
13
14
13
13 | 10
10
11
11
10
13
30
13
13 | 10
10
11
11
10
13
33
13
13 | 10
10
11
11
10
13
33
13
13 | 10
10
11
11
10
13
33
13
13 | 10
10
11
11
10
13
24
13
10 | 0
0
0
0
0
0
0
5
4
24 | ### LAKE SUPERIOR OUTFLOW 1860-1968 ### TABLE 4 # TOTAL DIVERSION FOR NAVIGATION IN HUNDREDS OF CUBIC FEET PER SECOND | YEAR | <u>JAN</u> | FEB | MAR | APR | <u>MAY</u> | JUNE | JULY | AUG | SEPT | OCT | NOA | DEC | |--|----------------------------|---------------------------------------|----------------------------------|--|--|--|---|---|---|--|--|---| | 1920
1921
1922
1923
1924
1925
1926
1927
1928
1929 | 21 0 0 0 0 0 0 0 0 0 0 0 0 | 21
0
0
0
0
0
0
0 | 26
0
0
0
0
0
0 | 8
5
2
0
3
5
1
8
1
6 | 12
10
9
12
14
14
13
14
12 | 14
11
13
15
15
14
16
15
15 | 15
12
15
16
14
15
16
15
15 | 15
12
16
15
13
15
16
15
15 | 14
11
14
15
14
15
16
14
17 | 14
11
13
15
14
15
16
14
16
14 | 11
13
14
10
12
12
11
13 | 10
10
4
3
3
3
3
5
2 | | 1930
1931
1932
1933
1934
1935
1936
1937
1938
1939 | 0 0 1 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 | 0 0 0 0 2 0 0 0 0 | 1322244831 | 13
10
7
8
11
11°
12
16
8 | 15
12
9
8
12
12
14
16
9 | 15
13
9
10
12
13
14
16
11
25 | 15
13
9
11
12
13
14
16
11
70 | 14
12
9
12
11
12
14
16
10
35 | 13
11
9
11
10
12
14
13
11 | 10
9
8
7
7
9
11
9 | 2322332234 | | 1940
1941
1942
1943
1944
1945
1946
1947
1948 | 0 0 1 2 0 1 0 0 0 0 0 | 0 0 0 0 0 0 0 0 | 0 0 2 0 2 3 0 0 0 1 | 4
11
13
4
10
13
6
7
10 | 14
17
15
14
16
16
10
15
16 | 15
17
16
15
17
16
13
17
16 | 16
17
16
19
17
17
16
18
17 | 17
16
19
17
17
16
17
16 | 16
16
15
19
17
16
15
16
16 | 16
15
15
19
16
15
16
16
16 | 13
15
14
17
12
12
14
14
15 | 3545323442 | ### LAKE SUPERIOR OUTFLOW 1860-1968 ### TABLE 4 # TOTAL DIVERSION FOR NAVIGATION IN HUNDREDS OF CUBIC FEET PER SECOND | <u>YEAR</u> | <u>JAN</u> | FEB | MAR | APR | MAY | JUNE | JULY | <u>AUG</u> | SEPT | OCT | NOV | DEC | |--|-------------------|-------------------|-----------------------|---|--|--|--|--|--|--|---|------------| | 1950
1951
1952
1953
1954
1955
1956
1957
1958
1959 | 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 | 0 1 0 1 0 0 0 0 0 0 0 | 3
11
15
5
7
11
7
5 | 14
17
17
17
14
16
16
16
11 | 17
18
12
18
15
16
17
17
14 | 17
18
11
19
16
18
11
19
16 | 17
18
18
19
15
17
14
17
16 | 16
17
18
17
14
16
16
16
14 | 16
17
18
16
12
16
16
15
14 | 13
16
11
9
12
13
10
10 | 4442334226 | | 1960
1961
1962
1963
1964
1965
1966
1967
1968 | 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 | 965484979 | 16
11
12
11
12
10
13
12
12 | 17
14
14
13
13
13
14
14 | 17
17
15
15
15
16
16
16 | 16
14
15
15
16
15
14 | 14
15
13
13
13
13
14
13 | 13
12
12
12
12
12
12
12 | 8
11
9
10
11
10
11
11 | 333333444 | # LAKE SUPERIOR OUTFLOW 1860-1968 ### TABLE 5 # TOTAL DIVERSION FOR POWER IN HUNDREDS OF CUBIC FEET PER SECOND | <u>YEAR</u> | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | OCT | NOV | DEC | |--|--|--|--|---|---|--|--|--|--|--|--|--| | 1893
1894
1895
1896
1897
1898
1899 | 13
13
13
28
28
28
50
47 | 13
13
13
30
28
43
50 | 13
13
13
25
29
41
60 | 13
13
13
32
20
45
47 | 13
13
13
22
22
52
55 | 13
13
13
18
23
54
42 | 13
13
13
24
34
44
52 | 13
13
13
22
26
42
43 | 13
13
13
29
31
27
51 | 13
13
13
35
37
38
61 | 13
13
14
40
46
49 | 13
13
20
29
51
56
33 | | 1900
1901
1902
1903
1904
1905
1906
1907
1908
1909 | 67
48
66
56
124
162
177
183
192
168 | 62
55
63
59
144
152
172
177
190
133 | 67
22
30
54
149
152
184
147
158
78 | 60
22
43
38
125
160
187
156
129 | 60
22
49
55
123
160
185
144
110
68 | 66
35
34
64
145
159
184
144
146
108 | 67
41
44
65
151
158
180
165
182
142 | 66
40
55
63
159
135
184
187
183
184 | 49
41
65
50
152
122
182
187
186
192 | 59
48
64
36
152
160
181
146
179 | 42
56
58
49
141
150
187
160
191 | 24
65
36
60
153
146
183
192
188 | | 1910
1911
1912
1913
1914
1915
1916
1917
1918
1919 | 182
174
136
188
223
306
317
385
432
462 | 176
167
136
198
222
322
317
380
426
448 | 139
158
136
196
218
319
339
376
439
453 | 93
164
135
198
209
309
366
391
428
442 | 68
167
131
204
209
324
379
393
401
448 | 119
167
130
197
214
312
474
395
437
429 | 149
151
134
200
216
319
429
404
454
422 | 180
143
163
204
220
321
485
385
478
413 | 179
133
165
216
256
318
512
380
459
440 | 178
132
171
224
271
324
505
410
480
447 | 177
134
180
221
276
323
492
408
470
458 | 164
133
177
215
297
319
493
405
457
450 | # LAKE SUPERIOR OUTFLOW 1860-1968 ### TABLE 5 # TOTAL DIVERSION FOR POWER IN HUNDREDS OF CUBIC FEET PER SECOND | YEAR | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | OCT | NOV | DEC | |--|--|--|--|--|--
--|--|--|--|--|--|--| | 1920
1921
1922
1923
1924
1925
1926
1927
1928
1929 | 464
449
390
452
477
496
525
533
522
495 | 461
466
418
465
478
493
517
521
536
497 | 455
446
423
492
492
504
506
520
521 | 455
454
419
489
491
534
510
533
559 | 470
381
381
492
496
540
530
526
531
556 | 468
355
373
498
465
512
520
520
508
558 | 465
441
394
484
428
493
509
493
465
548 | 463
466
399
489
468
508
358
526
478
512 | 469
470
392
478
453
521
234
514
496
546 | 475
462
428
459
458
553
488
551
524 | 480
419
440
449
477
536
224
514
604
516 | 455
400
441
464
473
534
329
498
535
508 | | 1930
1931
1932
1933
1934
1935
1936
1937
1938
1939 | 504
436
471
343
517
546
595
586
559
562 | 498
454
531
325
542
569
598
591
558
576 | 526
442
544
359
552
575
595
583
540
577 | 520
457
465
336
538
566
589
586
532
547 | 485
246
357
359
511
557
569
551
465
518 | 465
251
299
351
523
574
583
584
617
507 | 468
270
349
374
528
582
564
700
578 | 489
250
358
464
540
584
581
681
639 | 508
330
391
388
545
572
582
576
683 | 502
335
345
414
542
595
595
579
639 | 492
341
333
522
553
594
597
575
486
596 | 466
321
317
476
554
591
595
562
543
576 | | 1940
1941
1942
1943
1944
1945
1946
1947
1948 | 588
595
581
592
575
594
579
594
598
556 | 596
597
597
591
571
589
594
596
599
558 | 512
586
582
586
568
578
579
596
554 | 501
565
550
575
565
568
312
573
588
552 | 525
562
561
587
581
573
314
581
604
551 | 527
574
561
572
576
576
576
587
608
552 | 565
552
548
648
554
572
568
595
601
526 | 579
579
564
676
565
547
582
586
593
462 | 567
584
587
670
564
571
583
595
549
430 | 572
594
592
617
586
575
601
608
557
567 | 571
598
545
591
590
583
581
612
555
593 | 574
579
585
581
578
581
589
600
553
591 | ### LAKE SUPERIOR OUTFLOW 1860-1968 # TABLE 5 # TOTAL DIVERSION FOR POWER IN HUNDREDS OF CUBIC FEET PER SECOND | <u>YEAR</u> | <u>JAN</u> | FEB | MAR | APR | <u>MAY</u> | JUNE | JULY | AUG | SEPT | OCT | <u>VOV</u> | DEC | |--|--|--|--|--|--|---|--|--|--|---|--|--| | 1950
1951
1952
1953
1954
1955
1956
1957
1958
1959 | 565
606
636
626
633
589
634
643
655
611 | 602
609
627
614
623
589
638
631
649
618 | 602
600
623
600
617
587
636
547
632
604 | 597
608
607
598
607
563
625
534
551
645 | 603
660
615
611
626
611
634
474
550
650 | 603
659
618
624
635
629
571
494
544 | 639
645
617
630
578
611
583
492
515
627 | 652
638
632
639
638
611
640
493
519
622 | 656
640
627
640
634
367
636
483
524
599 | 647
632
632
636
633
398
655
546
595 | 646
629
624
638
642
643
653
588
620
667 | 599
622
617
637
599
641
654
588
602
651 | | 1960
1961
1962
1963
1964
1965
1966
1967 | 641
627
618
599
542
669
663
662
664 | 660
642
629
620
626
666
667
667 | 636
633
616
579
636
657
670
663 | 588
630
601
538
624
643
658
656 | 551
628
563
576
633
669
673
672
665 | 630
626
559
574
645
668
660
678 | 637
601
593
587
631
669
658
667
657 | 625
526
567
580
666
669
668
677
670 | 636
632
527
606
664
649
663
670 | 641
545
570
526
676
649
685
674
653 | 607
615
622
531
682
659
685
680
665 | 628
622
612
490
682
666
674
664
671 | # LAKE SUPERIOR OUTFLOW 1860-1968 ### TABLE 6 # MEAN MONTHLY LAKE SUPERIOR OUTFLOWS IN THOUSANDS OF CUBIC FEET PER SECOND | YEAR | <u>JAN</u> | FEB | MAR | APR | MAY | JUNE | JULY | <u>AUG</u> | SEPT | OCT | NOA | DEC | MEAN | |--|--|--|--|--|--|---|---|--|---|---|---|--|--| | 1860
1861
1862
1863
1864
1865
1866
1867
1868 | 66
67
73
66
51
56
57
61 | 66
65
63
59
50
48
61 | 71
66
63
60
56
50
51
63 | 73
66
62
58
57
59
64 | 82
84
74
63
65
71
67
74 | 86
89
76
64
66
77
72
72 | 88
93
77
67
68
82
75
80 | 87
90
81
71
70
82
77
83
76 | 86
91
82
74
71
81
77
82 | 87
89
82
74
68
80
78
77 | 83
86
78
76
63
71
76
73 | 78
79
74
70
64
67
66
68
74 | 79
80
74
67
64
69
67
71 | | 1869
1870
1871
1872
1873
1874
1875
1876
1877
1878 | 61
65
73
69
75
79
82
86
79 | 57
61
70
67
72
76
79
81
87
74
59 | 50
61
65
62
73
78
78
78
78
55 | 59
63
67
62
73
71
83
77
82
72
57 | 70
79
79
84
80
89
92
82
77
64 | 71
85
87
83
87
88
96
105
87
82
66 | 81
88
91
96
97
98
115
94
85 | 90
88
89
98
102
98
98
116
96
84
73 | 99
91
90
99
103
97
104
117
91
78 | 98
88
86
96
100
101
110
92
80
72 | 90
86
81
93
95
95
103
87
78
68 | 73
81
73
83
91
93
83
93
84
74 | 75
77
79
82
88
87
91
97
88
78 | | 1880
1881
1882
1883
1884
1885
1886
1887
1888
1889 | 57
74
79
73
72
75
70
66
70 | 57
72
75
71
69
72
67
66
60
65 | 55
72
73
71
67
70
67
66
60
65 | 55
70
73
72
64
66
67
63
55 | 69
78
80
72
71
78
74
70
75 | 84
83
82
79
73
84
78
77
85 | 89
87
89
83
77
88
81
84
87 | 86
86
91
92
78
92
84
82
87 | 90
89
90
85
79
87
81
79
86
83 | 85
99
88
82
81
84
82
85
80 | 86
97
87
79
82
82
78
77
81 | 80
90
81
74
78
77
73
70
75
68 | 74
83
82
78
74
80
75
74 | ### LAKE SUPERIOR OUTFLOW 1860-1968 ### TABLE 6 # MEAN MONTHLY LAKE SUPERIOR OUTFLOWS IN THOUSANDS OF CUBIC FEET PER SECOND | YEAR | <u>JAN</u> | <u>FEB</u> | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | OCT | NOA | DEC | MEAN | |--|--|--|--|--|--
--|--|---|--|---|--|---|--| | 1890
1891
1892
1893
1894
1895
1896
1897
1898
1899 | 69
58
61
55
62
73
70
74
67
69 | 59
60
55
60
71
70
69
63 | 59
57
52
59
66
69
67 | 58
54
56
68
68
70
65 | 65
62
63
78
72
78
77
69
81 | 76
66
67
71
82
78
85
83
76
87 | 83
68
69
74
84
82
87
88
80
91 | 81
68
69
76
84
82
87
89
82 | 79
67
69
74
82
85
86
87
82
97 | 78
68
67
73
83
87
80
84
81
92 | 75
66
62
72
81
79
81
83
79 | 70
63
57
64
77
77
75
78
86 | 71
64
62
65
77
78
79
73
82 | | 1900
1901
1902
1903
1904
1905
1906
1907
1908
1909 | 79
80
66
64
72
78
82
74
75 | 77
75
62
61
68
71
76
71
70 | 73
69
57
60
68
67
74
65
54 | 73
70
61
62
70
74
76
70
62
53 | 77
76
65
70
76
79
81
72
67
56 | 78
79
69
77
82
82
86
78
78 | 82
86
74
79
84
87
88
83
86 | 86
86
87
86
87
89
88
88 | 92
81
77
80
87
89
88
91
85
76 | 94
81
74
81
90
93
86
87
82
76 | 94
78
75
80
87
88
84
85
79 | 84
72
69
73
81
84
79
82
74 | 82
78
69
72
79
82
82
79
76
66 | | 1910
1911
1912
1913
1914
1915
1916
1917
1918
1919 | 67
55
57
62
70
67
71
89
66
58 | 63
50
54
60
69
67
70
86
64
56 | 57
47
53
58
65
66
84
65
56 | 55
48
54
64
74
86
56 | 57
52
60
68
70
70
83
90
66
58 | 64
56
64
70
73
71
98
91
72
56 | 66
58
64
73
75
75
98
89
62
57 | 70
63
69
75
76
76
104
80
66 | 69
62
70
76
80
75
115
83
74 | 68
62
71
79
87
75
119
85
76
58 | 66
69
78
85
76
114
82
70 | 58
58
65
75
69
73
108
65
58 | 63
56
20
74
71
94
67
57 | # LAKE SUPERIOR OUTFLOW 1860-1968 TABLE 6 # MEAN MONTHLY LAKE SUPERIOR OUTFLOWS IN THOUSANDS OF CUBIC FEET PER SECOND | YEAR | <u>JAN</u> | <u>FEB</u> | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | <u>OCT</u> | NOV | DEC | MEAN | |--|--|--|--|--|---|--|--|---|--|---|--|---|--| | 1920
1921
1922
1923
1924
1925
1926
1927
1928
1929 | 60
56
44
50
54
55
72
75
69 | 59
57
45
53
54
57
75
55 | 58
54
54
54
55
56
71
73 | 58
56
46
53
56
59
58
74
77 | 82
51
47
60
56
60
76
79
98 | 85
49
43
53
57
78
76 | 89
58
45
55
49
53
56
76
91 | 99
61
47
55
53
59
45
81
83
76 | 86
61
46
54
52
74
42
79
101 | 68
60
49
53
52
77
44
77
111
60 | 61
51
52
54
74
49
82
117
58 | 58
48
51
53
53
68
59
75
103
56 | 72
55
47
54
53
62
54
76
86
73 | | 1930
1931
1932
1933
1934
1935
1936
1937
1938
1939 | 55
49
53
49
50
65
62
62 | 55
51
58
47
60
62
65
64
63 | 58
49
58
50
61
65
64
63 | 57
57
57
45
59
65
60
74 | 58
44
57
53
58
99
83
62
81
101 | 61
46
55
56
73
89
87
76
117 | 77
49
60
69
94
94
85
72
126 | 92
47
61
65
101
95
86
72
124
126 | 81
55
79
61
92
99
84
73
122
124 | 59
56
72
65
78
110
77
73
118
112 | 56
57
69
75
85
104
77
72
97 | 52
53
55
54
98
66
64
61 | 63
51
61
58
76
88
75
68
91 | | 1940
1941
1942
1943
1944
1945
1946
1947
1948 | 64
62
83
60
87
74
75
76
57 | 65
62
64
58
74
75
75 | 54
61
59
75
74
73
74
57 | 53
60
89
81
59
86
68
73
75 | 56
60
67
90
61
108
77
76
74
63 | 57
60
81
110
61
106
77
78
69
63 | 61
57
92
123
80
76
77
117
65
61 | 62
60
79
127
100
74
75
115
63
66 | 61
79
125
109
73
77
102
58
72 | 61
77
69
114
115
81
79
114
59 | 61
108
56
99
102
94
77
91
59 | 60
84
59
75
83
75
76
78
57 | 60
68
73
95
80
83
75
89
67 | ### LAKE SUPERIOR OUTFLOW 1860-1968 # TABLE 6 # MEAN MONTHLY LAKE SUPERIOR OUTFLOWS IN THOUSANDS OF CURIC FEET PER SECOND | YEAR | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | OCT | NOV | DEC | MEAN | |--|--|--|--|---|--|--|--|---|---|---|--|--|---| | 1950
1951
1952
1953
1954
1955
1956
1957
1958
1959 | 63
82
84
74
74
62
74
67
71
66 | 66
80
82
72
72
62
74
66
71
67 | 66
80
81
70
72
61
73
57
69 | 66
104
82
78
71
60
76
57
61
70 | 69
122
107
93
76
72
69
52
62
70 | 105
123
79
98
77
75
61
54
62
69 | 124
124
67
107
100
70
62
54
57 | 127
123
117
120
116
66
72
64
56 | 126
124
117
119
113
41
72
67
57 | 124
124
114
114
96
50
73
67
66
112 | 121
107
101
76
83
70
66
69
118 | 113
103
75
80
65
77
69
65
66
89 | 98
109
93
94
84
65
70
61
64
78 | | 1960
1961
1962
1963
1964
1965
1966
1967 | 74
67
64
63
59
86
77
71
69 | 72
67
65
67
84
77
72
69 | 69
66
64
60
68
83
77
71
67 | 66
63
57
68
82
81
71 | 68
68
60
61
70
94
80
85
70 | 111
69
60
61
72
99
79 | 115
65
63
63
81
113
96
90
100 | 105
57
61
62
100
114
96
92
122 | 103
57
56
72
107
108
104
87
123 | 92
58
64
111
102
91
71
124 | 73
65
68
67
116
102
80
72
123 | 68
65
65
56
93
85
75
70 | 85
64
63
63
84
96
84
78
93 |